Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest

In this Part II of this paper we first refine the analysis of error-free vector transformations presented in Part I. Based on that we present an algorithm for calculating the rounded-to-nearest result of s := ∑ pi for a given vector of floatingpoint numbers pi, as well as algorithms for directed rounding. A special algorithm for computing the sign of s is given, also working for huge dimensions...

متن کامل

Accurate Floating-Point Summation Part I: Faithful Rounding

Given a vector of floating-point numbers with exact sum s, we present an algorithm for calculating a faithful rounding of s, i.e. the result is one of the immediate floating-point neighbors of s. If the sum s is a floating-point number, we prove that this is the result of our algorithm. The algorithm adapts to the condition number of the sum, i.e. it is fast for mildly conditioned sums with slo...

متن کامل

Accurate floating point summation∗

We present and analyze several simple algorithms for accurately summing n floating point numbers S = ∑n i=1 si, independent of how much cancellation occurs in the sum. Let f be the number of significant bits in the si. We assume a register is available with F > f significant bits. Then assuming that (1) n ≤ b2F−f/(1 − 2−f )c + 1, (2) rounding is to nearest, (3) no overflow occurs, and (4) all u...

متن کامل

Accurate Floating - Point Summation ∗

Given a vector of floating-point numbers with exact sum s, we present an algorithm for calculating a faithful rounding of s into the set of floating-point numbers, i.e. one of the immediate floating-point neighbors of s. If the s is a floating-point number, we prove that this is the result of our algorithm. The algorithm adapts to the condition number of the sum, i.e. it is very fast for mildly...

متن کامل

Accurate floating-point summation: a new approach

The aim of this paper is to find an accurate and efficient algorithm for evaluating the summation of large sets of floating-point numbers. We present a new representation of the floating-point number system in which a number is represented as a linear combination of integers and the coefficients are powers of the base of the floating-point system. The approach allows to build up an accurate flo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2009

ISSN: 1064-8275,1095-7197

DOI: 10.1137/07068816x